Please note that most of the test equipment referred to in this catalogue is normally required to be used in a controlled temperature and humidity environment. This ensures that the results are comparable from day to day and year to year. Tests carried out at ambient temperatures cannot be compared.

Standard test environments are:

<table>
<thead>
<tr>
<th>Leather:</th>
<th>20 ± 2°C 65 ± 4% rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other materials:</td>
<td>23 ± 2°C 50 ± 4% rh</td>
</tr>
</tbody>
</table>

Please check the appropriate standard for full details of the testing requirements.

Although every care has been taken in compilation, SATRA Technology Centre does not accept responsibility for any errors, including interpretation.
Alphabetical Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABRASION – BIOMECHANICAL</td>
<td>STM 528</td>
<td>1</td>
</tr>
<tr>
<td>ABRASION – LACES</td>
<td>STM 152 / STM 439</td>
<td>2</td>
</tr>
<tr>
<td>ABRASION – SATRA/MARTINDALE</td>
<td>STM 604</td>
<td>3</td>
</tr>
<tr>
<td>ABRASION – SOLING</td>
<td>STM 140 / STM 602</td>
<td>3</td>
</tr>
<tr>
<td>ADHESION – CREEP</td>
<td>STM 164</td>
<td>4</td>
</tr>
<tr>
<td>ADHESION – FINISH</td>
<td>STD 112</td>
<td>4</td>
</tr>
<tr>
<td>ADHESION – SOLE</td>
<td>STD 185</td>
<td>5</td>
</tr>
<tr>
<td>COLOUR FASTNESS</td>
<td>STD 442 / STD 488 / STD 422 / STD 461 GC / STD 461 GS</td>
<td>6</td>
</tr>
<tr>
<td>COMPRESSION SET</td>
<td>STD 133 / STD 401</td>
<td>7</td>
</tr>
<tr>
<td>CUT TESTING</td>
<td>STM 611 / STM 610</td>
<td>8</td>
</tr>
<tr>
<td>EN 388 GLOVE TESTING</td>
<td>STM 604 / STM 611 / STM 610 / STM 566</td>
<td>8</td>
</tr>
<tr>
<td>FITTING</td>
<td>STD 206 / STD 225</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>STD 224 / STD 219 / STD 223</td>
<td>10</td>
</tr>
<tr>
<td>FLEXING – FIBREBOARD</td>
<td>STM 129</td>
<td>11</td>
</tr>
<tr>
<td>FLEXING – MIDSOLE</td>
<td>STM 441</td>
<td>11</td>
</tr>
<tr>
<td>FLEXING – SOLING</td>
<td>STM 141</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>STD 405 / STM 612 / STM 465</td>
<td>12</td>
</tr>
<tr>
<td>FLEXING – UPPER</td>
<td>STM 601 / STM 701</td>
<td>13</td>
</tr>
<tr>
<td>FLEXING – WHOLE SHOE</td>
<td>STM 184</td>
<td>13</td>
</tr>
<tr>
<td>HARDNESS (DUROMETERS)</td>
<td>STD 226 / STD 227</td>
<td>14</td>
</tr>
<tr>
<td>HEAT RESISTANCE</td>
<td>STM 455</td>
<td>15</td>
</tr>
<tr>
<td>HUMIDITY – SENSOR</td>
<td>STD 228</td>
<td>15</td>
</tr>
<tr>
<td>IMPACT – HEELS</td>
<td>STD 155 / STD 156</td>
<td>16</td>
</tr>
<tr>
<td>IMPACT – SAFETY FOOTWEAR</td>
<td>STD 609</td>
<td>16</td>
</tr>
<tr>
<td>INSULATION</td>
<td>STM 471 / STM 472</td>
<td>17</td>
</tr>
<tr>
<td>LASTOMETERS</td>
<td>STM 463</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>STD 104 / STD 190 / STD 190L</td>
<td>18</td>
</tr>
</tbody>
</table>
Alphabetical Index continued

<table>
<thead>
<tr>
<th>Category</th>
<th>Code/Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leather Analysis</td>
<td>STM 145</td>
<td>18</td>
</tr>
<tr>
<td>Leather Assessment</td>
<td>STD 114 / STD 119</td>
<td>19</td>
</tr>
<tr>
<td>Light Cabinet</td>
<td>STM 500</td>
<td>20</td>
</tr>
<tr>
<td>Low Temperature Testing</td>
<td>STM 101F / STM 408F / STM 477F / STM 141F /</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>STM 612F / STM 465F</td>
<td></td>
</tr>
<tr>
<td>Moisture Management</td>
<td>STM 567</td>
<td>22</td>
</tr>
<tr>
<td>Ozone Chambers</td>
<td>HTE 703 / HTE 903</td>
<td>23</td>
</tr>
<tr>
<td>Permeability</td>
<td>STM 175 / STM 473 / STD 478</td>
<td>24</td>
</tr>
<tr>
<td>Pipiness</td>
<td>STD 174</td>
<td>25</td>
</tr>
<tr>
<td>Plastimeter</td>
<td>STD 449</td>
<td>25</td>
</tr>
<tr>
<td>Resilience</td>
<td>EPH-50</td>
<td>25</td>
</tr>
<tr>
<td>Rub Fastness</td>
<td>STM 705 / STM 421 / STM 461</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>STM 462</td>
<td>27</td>
</tr>
<tr>
<td>Slip Resistance</td>
<td>STM 603</td>
<td>27</td>
</tr>
<tr>
<td>State of Cure</td>
<td>STM 135</td>
<td>28</td>
</tr>
<tr>
<td>Tensile Testing (Manual)</td>
<td>STD 172</td>
<td>28</td>
</tr>
<tr>
<td>Tensile Testing</td>
<td>STM 566 / STM 766</td>
<td>29</td>
</tr>
<tr>
<td>Thermal - Whole Shoe</td>
<td>STM 567</td>
<td>32</td>
</tr>
<tr>
<td>Thickness</td>
<td>STD 483 / STD 484 / STD 495</td>
<td>32</td>
</tr>
<tr>
<td>Toe Puffs</td>
<td>STD 153</td>
<td>32</td>
</tr>
<tr>
<td>Vacuum Forming</td>
<td>STM 329 / STM 330</td>
<td>34</td>
</tr>
<tr>
<td>Water Resistance</td>
<td>STM 505 / STM 606D</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>STM 703 / STM 704 / STM 706</td>
<td>36</td>
</tr>
</tbody>
</table>
Numerical Index

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM 101F</td>
<td>Low Temperature Vamp Flexing Machine – 12 Station</td>
<td>21</td>
</tr>
<tr>
<td>STD 104</td>
<td>Hand Operated Lastometer</td>
<td>18</td>
</tr>
<tr>
<td>STD 112</td>
<td>Adhesion of Finish Tester</td>
<td>4</td>
</tr>
<tr>
<td>STD 114</td>
<td>Leather Shrinkage Apparatus</td>
<td>19</td>
</tr>
<tr>
<td>STD 119</td>
<td>Wrinkleometer</td>
<td>19</td>
</tr>
<tr>
<td>STM 129</td>
<td>Fibreboard Flexing Machine</td>
<td>11</td>
</tr>
<tr>
<td>STD 133</td>
<td>Compression Set – Constant Stress</td>
<td>7</td>
</tr>
<tr>
<td>STM 135</td>
<td>State of Cure Tester</td>
<td>28</td>
</tr>
<tr>
<td>STM 140</td>
<td>Soling Abrasion Tester</td>
<td>3</td>
</tr>
<tr>
<td>STM 141</td>
<td>Ross Flexing Machine</td>
<td>11</td>
</tr>
<tr>
<td>STM 141F</td>
<td>Low Temperature Ross Flexing Machine</td>
<td>21</td>
</tr>
<tr>
<td>STM 145</td>
<td>Shaking Machine for Leather Analysis</td>
<td>18</td>
</tr>
<tr>
<td>STM 152</td>
<td>Shoelace Abrasion Tester – Lace to Eyelet method</td>
<td>2</td>
</tr>
<tr>
<td>STM 153A</td>
<td>Compression Cage used in Toe Puff Analysis</td>
<td>32</td>
</tr>
<tr>
<td>STD 153C</td>
<td>Repeated Dome Collapsing Device</td>
<td>33</td>
</tr>
<tr>
<td>STD 153D</td>
<td>Toe Puff Dome Forming Device</td>
<td>33</td>
</tr>
<tr>
<td>STD 153H</td>
<td>Dome Height Measuring Equipment</td>
<td>33</td>
</tr>
<tr>
<td>STD 153HD</td>
<td>Dome Height Measuring Device</td>
<td>33</td>
</tr>
<tr>
<td>STD 153P</td>
<td>Press for Forming Toe Puff Domes</td>
<td>33</td>
</tr>
<tr>
<td>STD 155</td>
<td>Heel Impact Tester</td>
<td>16</td>
</tr>
<tr>
<td>STD 156</td>
<td>Heel Fatigue Tester</td>
<td>16</td>
</tr>
<tr>
<td>STM 164</td>
<td>Creep Cabinet for Adhesion Testing</td>
<td>4</td>
</tr>
<tr>
<td>STD 172</td>
<td>Simple Tensile Tester</td>
<td>28</td>
</tr>
<tr>
<td>STD 174</td>
<td>Break / Pipiness Scale</td>
<td>25</td>
</tr>
<tr>
<td>STM 175</td>
<td>Permeability / Absorption Machine</td>
<td>24</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>STM 184</td>
<td>Whole Shoe Flexing Machine – Wet and dry</td>
<td>13</td>
</tr>
<tr>
<td>STM 184H</td>
<td>Whole Shoe Flexing Machine – High leg</td>
<td>13</td>
</tr>
<tr>
<td>STD 185</td>
<td>Sole Adhesion Tester</td>
<td>5</td>
</tr>
<tr>
<td>STD 190</td>
<td>Instant Lastometer</td>
<td>18</td>
</tr>
<tr>
<td>STD 190L</td>
<td>Instant Lastometer [extended throat]</td>
<td>18</td>
</tr>
<tr>
<td>STD 206</td>
<td>Quarter and Back Height Gauge</td>
<td>9</td>
</tr>
<tr>
<td>STD 219</td>
<td>Shoe Measuring Callipers – Size Stick</td>
<td>10</td>
</tr>
<tr>
<td>STD 223</td>
<td>Digital Last Assessment Jig</td>
<td>10</td>
</tr>
<tr>
<td>STD 224</td>
<td>SATRA Shoe Fitting Boards</td>
<td>10</td>
</tr>
<tr>
<td>STD 225</td>
<td>Internal Shoe Size Gauge</td>
<td>9</td>
</tr>
<tr>
<td>STD 226</td>
<td>Digital Durometer</td>
<td>14</td>
</tr>
<tr>
<td>STD 227</td>
<td>Analogue Durometer</td>
<td>14</td>
</tr>
<tr>
<td>STM 228</td>
<td>SATRA Sensor</td>
<td>15</td>
</tr>
<tr>
<td>STM 329</td>
<td>Vacuum Forming Machine Hand Operated</td>
<td>34</td>
</tr>
<tr>
<td>STM 330</td>
<td>Vacuum Forming Machine Motor Operated</td>
<td>34</td>
</tr>
<tr>
<td>STD 401</td>
<td>Compression Set – Constant Strain</td>
<td>7</td>
</tr>
<tr>
<td>STD 405</td>
<td>Chisel Holding Jig for use with Ross Flexer</td>
<td>12</td>
</tr>
<tr>
<td>STM 408F</td>
<td>Low Temperature Bally Flexing Machine – 8 station</td>
<td>21</td>
</tr>
<tr>
<td>STM 421</td>
<td>SATRA Rub Fastness Tester – single station</td>
<td>26</td>
</tr>
<tr>
<td>STD 422</td>
<td>Crockmeter</td>
<td>6</td>
</tr>
<tr>
<td>STM 439</td>
<td>Shoelace Abrasion Tester – Lace to Lace method</td>
<td>2</td>
</tr>
<tr>
<td>STM 441</td>
<td>Midsole Flexing Device</td>
<td>11</td>
</tr>
<tr>
<td>STD 442</td>
<td>Perspirometer – for Perspiration Fastness test</td>
<td>6</td>
</tr>
<tr>
<td>STD 449</td>
<td>Low Profile Plastimeter</td>
<td>25</td>
</tr>
<tr>
<td>STD 455</td>
<td>Heat Resistance Tester</td>
<td>15</td>
</tr>
<tr>
<td>Model</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>STM 461</td>
<td>Circular Rub Fastness Tester</td>
<td>26</td>
</tr>
<tr>
<td>STM 462</td>
<td>Circular Rub Fastness Tester – Automatic</td>
<td>27</td>
</tr>
<tr>
<td>STM 463</td>
<td>Digital Lastometer</td>
<td>17</td>
</tr>
<tr>
<td>STM 465</td>
<td>Whole Sole Flexing Machine</td>
<td>12</td>
</tr>
<tr>
<td>STM 465F</td>
<td>Low Temperature Whole Sole Flexing Machine</td>
<td>12</td>
</tr>
<tr>
<td>STM 471</td>
<td>Heat Insulation Tester – Sandbath</td>
<td>17</td>
</tr>
<tr>
<td>STM 472</td>
<td>Cold Insulation Tester</td>
<td>17</td>
</tr>
<tr>
<td>STM 473</td>
<td>Water Vapour Permeability Machine</td>
<td>24</td>
</tr>
<tr>
<td>STM 477F</td>
<td>Low Temperature Bally Flexing Machine – 12 Station</td>
<td>21</td>
</tr>
<tr>
<td>STD 478</td>
<td>Water Vapour Absorption</td>
<td>24</td>
</tr>
<tr>
<td>STD 483</td>
<td>Leather Thickness Gauge – deadweight</td>
<td>32</td>
</tr>
<tr>
<td>STD 484</td>
<td>Synthetic Material Thickness Gauge – deadweight</td>
<td>32</td>
</tr>
<tr>
<td>STD 488</td>
<td>Multi Fibre Ribbon used in Water Fastness testing</td>
<td>6</td>
</tr>
<tr>
<td>STD 488G</td>
<td>Glass Plates for Water Fastness Test</td>
<td>6</td>
</tr>
<tr>
<td>STM 488I</td>
<td>Fan Assisted Oven 0–300°C</td>
<td>6</td>
</tr>
<tr>
<td>STD 488P</td>
<td>Petri Dishes for Water Fastness Test</td>
<td>6</td>
</tr>
<tr>
<td>STD 495</td>
<td>Rubber Thickness Gauge – deadweight</td>
<td>32</td>
</tr>
<tr>
<td>STM 500</td>
<td>VeriVide Colour Assessment</td>
<td>20</td>
</tr>
<tr>
<td>STM 505</td>
<td>Dynamic Footwear Water Resistance Tester</td>
<td>35</td>
</tr>
<tr>
<td>STD 528</td>
<td>Pedatron</td>
<td>1</td>
</tr>
<tr>
<td>STM 566</td>
<td>Tensile Tester – PC controlled</td>
<td>29</td>
</tr>
<tr>
<td>STM 567</td>
<td>SATRA Breathing Foot</td>
<td>22</td>
</tr>
<tr>
<td>STM 601</td>
<td>Vamp Flexing Machine</td>
<td>13</td>
</tr>
<tr>
<td>STM 602</td>
<td>Soling Materials Abrasion Tester</td>
<td>3</td>
</tr>
<tr>
<td>STM 603</td>
<td>Slip Resistance Tester</td>
<td>27</td>
</tr>
<tr>
<td>STM 604</td>
<td>Martindale Abrasion Tester</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>STM 606D</td>
<td>Water Resistance Tester for Upper Leather (Maeser type)</td>
<td>35</td>
</tr>
<tr>
<td>STM 609</td>
<td>Impact Tester for Safety Footwear</td>
<td>16</td>
</tr>
<tr>
<td>STM 610</td>
<td>Cut Resistance Evaluator</td>
<td>8</td>
</tr>
<tr>
<td>STM 611</td>
<td>Circular Blade Cut Resistance Tester</td>
<td>8</td>
</tr>
<tr>
<td>STM 612</td>
<td>SATRA/Bata Belt Flexing Machine</td>
<td>12</td>
</tr>
<tr>
<td>STM 612F</td>
<td>Low Temperature SATRA/Bata Belt Flexing Machine</td>
<td>21</td>
</tr>
<tr>
<td>STM 701</td>
<td>SATRA/Bally Flexometer – 12 station</td>
<td>13</td>
</tr>
<tr>
<td>STM 703</td>
<td>SATRA/Bally Penetrometer</td>
<td>36</td>
</tr>
<tr>
<td>STM 704</td>
<td>SATRA/Bally Stiffness Meter used with Penetrometer</td>
<td>36</td>
</tr>
<tr>
<td>STM 705</td>
<td>SATRA/Bally Rub Fastness Tester – 2 Station</td>
<td>26</td>
</tr>
<tr>
<td>STM 706</td>
<td>SATRA/Bally Permeometer</td>
<td>36</td>
</tr>
<tr>
<td>STM 766</td>
<td>Tensile Testing Machine (High Capacity)</td>
<td>29</td>
</tr>
<tr>
<td>EPH-50</td>
<td>Resilience Tester</td>
<td>25</td>
</tr>
<tr>
<td>HTE 703</td>
<td>Ozone Test Chamber</td>
<td>23</td>
</tr>
<tr>
<td>HTE 903</td>
<td>Ozone Test Chamber</td>
<td>23</td>
</tr>
</tbody>
</table>
STM 528 Pedatron

SATRA's Pedatron biomechanical abrasion tester provides an accelerated wear simulation under realistic conditions.

Traditionally, there are two ways to assess the wear resistance of footwear soling. An actual wear trial can be carried out requiring several wearers and several months of actual wear. Alternatively, we can carry out a time-reduced standard abrasion test in the laboratory using a grit paper. Neither of these methods is ideal and can produce conflicting results.

The Pedatron abrasion tester combines the realism of a service trial with the speed of the laboratory test, utilising whole footwear, and overcomes the drawbacks of both. It does this by imposing a true walking action over a real wear surface, with motions, speeds and pressures that reproduce values obtained in biomechanical studies. The interchangeable surface is usually a textured concrete slab, which is a demanding but real surface. The test program alternates straight steps with turning steps with the sole forepart in contact. The combined action of walking and turning of the wear surface produces results similar to those found in wear trials.

The machine can also be used to investigate the wear of tread pattern elements, integrity of inserts and unusual wear behaviour. It can also be used in conjunction with other SATRA machines to enable testing of finished footwear throughout the footwear’s lifetime; for example, to help determine how waterproofness or slip is affected when footwear becomes partially worn.

The Pedatron has been developed to satisfy the increasing demand to carry out accelerated wear trials on both finished footwear and different flooring types. The machine consists of two distinct and separate motions. A processor-controlled servo motor operating through a ball screw mechanism drives the leg on which the sample footwear is mounted and a flooring mechanism which rotates and is synchronised with the leg movement. The force applied by the footwear on the sample flooring surface follows a distinct force profile which can be adjusted by the adding or subtracting of weights. The speed of the machine can be adjusted to replicate the action of normal walking through to sprinting.

The machine is supplied with a full control system. Test programs can be set and stored for future use.
Abrasion

Shoelace abrasion

Shoelaces that break are a frustrating problem and can spoil the performance of otherwise good footwear. Predicting the probable life of a shoelace or determining its abrasion resistance can be carried out using two abrasion techniques described below. Abrasion resistance gives a much better indication than tensile strength of the service life of a boot or shoelace. With SATRA test equipment, laces can be assessed for abrasion resistance using a shoelace to shoelace technique or, alternatively, a shoelace to eyelet method. Two machines are required to carry out the two tests and they are outlined here.

STM 152 Lace to eyelet method

This method utilises a standard eyelet mounted on a rigid board and the lace to be tested. Laces should be stored in a standard controlled atmosphere for at least 48 hours before testing. The equipment has six stations for testing laces. Eyelets affixed to rigid boards are placed in the holders provided. One end of the lace to be tested is clamped in a carrier and the other end is passed through the eyelet and then fixed to a weight capable of applying a tensioning force of 4.46N to the lace. The machine moves each lace a distance of 75mm through the eyelet at 100 cycles per minute. The movement of the carrier causes the lace to rub in the eyelet. Each station has a separate counter and, when a lace breaks, the count is stopped on that station. When all six laces have broken, the machine will stop. STM 152 is provided with hand control for ease of setting and is fully guarded to comply with European Health and Safety requirements. This machine can be used to test eyelets against standard shoelaces or alternatively shoelaces against standard eyelets.

STM 439 Lace to lace method

This method is a versatile test where two similar laces are abraded together. Laces should be stored in a standard controlled atmosphere for at least 48 hours before testing. One of the two laces used at each of the six stations has both ends of the lace clamped in the carrier provided. The second lace is threaded through the loop created by the first lace. One end of the second lace is fixed to a moving carrier while the other is attached to a weight that tensions the lace to 2.45N. When the machine is started the action of the moving carrier causes the two laces to abrade. The machine moves each lace a distance of 35mm at a frequency of 60 cycles per minute. Each station has a separate counter and, when a lace breaks, the count is stopped on that station. When all six laces have broken, the machine will stop. STM 439 is provided with hand control for ease of setting and is fully guarded to comply with European Health and Safety requirements. The same machine can be used to test the abrasion effects of rubbing the lace through a lace carrier or hook.
STM 604 SATRA/Martindale abrasion machine

This machine is ideal for determining the abrasion resistance of all types of fabrics and leather used for footwear, upholstery, clothing, gloves and many other products. The Martindale is the internationally-accepted test standard for wear of fabrics and it is also used for determining the susceptibility of fabrics to pilling.

The STM 604 can also be used for testing the abrasion resistance of rubber gloves, plastic and rubber coated fabrics by substituting the standard abradant with a grit paper.

The machine can be used for soiling test for light coloureds materials. A specially inked fabric replaces the standard abradant for this test.

An initial amount of the standard abrasive fabric is supplied with the machine.

STM 140 Soling abrasion machine

The SATRA soling materials abrasion machine gives a straightforward and realistic abrasion test for shoe soling and heel materials. The test pieces are drawn from side to side in a straight line under load over an abrasive coated cloth supported on the horizontal bed of the machine.

The cloth is moved slowly at right angles to the test piece so the test piece is always in contact with new abrasive cloth, maintaining constant cutting power.

The machine gives an average of abrasion through the entire thickness of samples such as leather or expanded polyurethane not of uniform composition. This can be achieved by abrading the two test pieces from alternative sides at the same time. Those pieces are 25mm (or 1 inch) square and the abrasive cloth is usually 80 grit. The loading on the test pieces is 0.56kg/cm² (8lb/in²). Dial gauges measuring thickness loss are a standard feature of the machine.

To ensure the test results obtained are accurate it is necessary to remove the debris caused by abrading the sample. This is achieved by applying a vacuum to the test area. The SATRA machine has a built-in vacuum extraction point where a normal domestic vacuum cleaner (not supplied) can be connected.

STM 602 Soling materials abrasion machine

This is ideal for testing rubber and urethanes to assess their resistance to abrasion in normal everyday wear. The principle of the test is simple but the unique three-head design of the SATRA abrasion tester reduces the time taken per test.

A 150mm diameter drum is rotated at 40rpm by a precision AC motor with variable speed control. A sheet of specified P60 abrasive paper (STM 469A or STM 469CA) is fixed to the drum by double-sided adhesive tape. A cylindrical sample, of fixed dimensions, is inserted in the sample holder and its protrusion adjusted and set using the integral micrometer. The sample holder either fixed or rotating, travels over the surface of the abrasive paper at 0.32m/sec under a loading of either 5 or 10 newtons for a set distance. An adjustable rotary cam allows the sample to travel 10, 20, 30 and 40 metres. On completion of the test the sample is removed and the volume loss determined by weighing and calculation.

The abrasive resistance of the compound can then be determined by relating the test results to those of a control compound (STM 469CR).

This SATRA machine has a self-tracking suction head which can be connected to a standard vacuum cleaner, removing the need for constant operator attention. A sample cutting knife is also available and is suitable for use with rotary pillar drill.
STM 164 Creep cabinet for testing adhesives

The cabinet is used to determine the heat resistance of adhesives (creep test) according to SATRA Test Method TM403. The method is equivalent to BS 5131 1.1.1 in most respects and is similar in principle to Method A4 of the Association of European Adhesive Manufacturers (FEICA).

It has been designed to provide all the test conditions required by the SATRA, BSI and FEICA test methods and will accommodate a maximum of ten test pieces.

The cabinet is a double-walled sheet metal construction with integral thermal insulation. The top hinged front door comprises a single glazed unit. Toggle clips are fitted for door closure. The air in the cabinet is circulated by a crossflow fan/heater unit which provides a constant flow/temperature characteristic across all the specimens being tested. An electronic temperature controller with platinum resistance thermometer sensing element provides an accurate control of temperature (normally 60°C, but temperatures up to 80°C can be obtained).

The cabinet is usually mounted on a wall or other vertical surface and mounting brackets are provided.

STD 112 Adhesion of finish tester

Poor adhesion of the finish of an upper material can give rise to flaking or peeling in the shoe factory or in wear. Measurement of the actual strength of the adhesion is therefore important and the SATRA adhesion of finish tester enables this to be done reliably and simply. It has been adopted by the Society of Leather Technologists and Chemists (Method SLF 11) and the method has been recommended by the British Standards Institution as suitable for footwear materials in the introduction to BS 5131. It is also a test requirement for garment leathers in BS 6453: 1984.

The finish side of a strip of upper material is first stuck to a test strip (which can be of metal or PVC depending upon the adhesive used) using an adhesive which does not affect the bond of the finish to the upper material. Increasing static loads are applied to the upper material until it peels away, leaving the finish on the test strip. In some cases the top coat of the finish may be peeled from the base coat. The test is, therefore, very useful in the shoe factory for measuring the compatibility of shoe room dressings and of leather finishes.

Two methods of preparing the test assemblies are available and the actual composition of the apparatus depends on which adhesive is used.

The machine is supplied as standard set up to carry out the polyurethane adhesive test. If the epoxy resin adhesive test is required then the extra parts need to be ordered, Ref. STD 112A, together with resin and hardener, Ref. STD 112R and STD 112H.

A similar test is available utilising a tensile testing machine. However, this test can be done only where the finish is strong enough to withstand the applied load.
This well-proven instrument is designed to measure the strength of the adhesion of stuck-on and moulded soles at the toe and heel of finished footwear in the shoe factory, but is equally useful in the testing laboratory.

The illustrations show the standard STD 185 with and without the heel attachment STD 185H. The sole of the footwear, still on its last, is positioned on the ridge shaped anvil or fulcrum so that the curved toe piece of the instrument fits in the feather-line groove between the sole and the upper.

A gradually increasing downhill force is applied by hand to the backpart of the footwear and this effectively becomes a downward force applied by the toe piece to separate the sole from the upper. This force is shown by the load dial gauge on the instrument, which incorporates a maximum load pointer.

The actual load to cause separation can be measured or alternatively, a pass load can be applied to check that the sole adhesion is satisfactory and the sole does not come away. This second method of operation is the more useful one in the shoe factory since it can be applied to ordinary shoes from the production line. If, as should happen, the sole attachment remains secure, the shoes can be returned to the rack or track quite undamaged. If soles pull away before the pass load is reached, a check on materials, technique or process is called for.

The measurement of adhesion at the heel (mainly for men’s and industrial footwear) is carried out in a similar way, but the heel is supported in a cradle (STD 185H), which replaces the anvil.
STD 442 and STD 488 Colour fastness to water and perspiration

The fastness of colour when subjected to water and perspiration is a constant problem for manufacturers of footwear uppers and clothing and it can have disastrous and costly results. Materials can be checked easily and quickly using the equipment below to assess the likelihood of colour bleeding from a material when exposed to water or perspiration.

The test requires the material to be immersed in water or perspiration while in direct contact with standard materials. A weight is used to ensure the specimen is kept below the surface of the liquid throughout the duration. The specimen is subjected to a temperature equal to body temperature by a fan-assisted oven.

The test requires several items of equipment as described below:

STD 488 – multi-fibre ribbon
This is a standard multi-fibre ribbon and is made up from six different standard materials:
- Filament spun cellulose acetate
- Bleached cotton
- Spun nylon
- Spun polyester
- Spun acrylic
- Worsted spun wool

STD 488P and 488G – Petri dish and glass weight
A standard size Petri dish and a glass plate (weight). The glass plate is the required weight and size conforming to the standard and is supplied ready calibrated.

STD 488I – incubator oven
A commercial fan-assisted oven (0-300°C) capable of holding temperature to ± 2°C. The oven is supplied complete with shelves and digital PID temperature control.

STD 461GC and STD 461GS – grey scales
These items are used to assess the amount of colour transfer or staining. Known as grey scales they conform to BS EN 20105 – AO2 & AO3.

STM 500 – light cabinet
A standard light cabinet used for determining or comparing the transfer of colour or staining under standard light sources. This is used in conjunction with the grey scales described above. For a full description of STM 500 see page 20.

STD 422 Crockmeter

This test is designed for determining the degree of colour which may be transferred from the surface of coloured materials to other surfaces by rubbing. The machine takes its name from the term 'crocking' meaning the transfer of colouring matter or other substances from the test sample to a wet or dry cloth rubbed against it.

The STD 422 consists of a base on to which the sample to be tested is secured. A sliding mechanism is arranged to traverse a finger along the sample. The end of the finger is covered by a piece of cloth and a pre-determined load is also applied to the finger during the sliding motion. Coloured leathers are usually tested using a white bleached cloth – for white leathers a black colour-fast cloth is employed.

The movement of the finger is obtained from a cranked drive by means of a handle. A test would normally consist of 10 turns of the handle at 1 turn/second. Assessment of colour transfer is made using the grey scale.

The white cloth, GSTD422CL/500, used for rubbing and the grey scales are available from SATRA Equipment Sales.
Constant strain

This apparatus is designed for constant strain compression set testing of rubber and rubber-like materials at room temperature and elevated temperatures.

The British Standard method requires that the rubber discs, initially 13mm diameter and 6.3mm thick, shall be held compressed by 25%. This is achieved by placing each of three discs between two compression plates screwed together until stopped by a distance piece 4.73mm thick. The apparatus consists of a stack of alternate compression plates and distance pieces allowing five rubbers to be tested at once. They are all compressed in one operation by turning a single hand nut on a centre bolt.

The test pieces are held compressed for the specified time and, after release and a short recovery period, the new thicknesses are measured. The compression set of the material is the amount of compression retained, expressed as a percentage of the original thickness of the disc.

To facilitate the hand tightening, the base of the apparatus is made to fit into a holder screwed to the bench, but it is easily removed from this if the apparatus needs to be placed in an oven for a high temperature test. Alternatively, the base of the instrument may be screwed to the bench if used for room temperature tests only.

Constant stress

During walking, a shoe sole (or top piece) is subjected to compression forces and deformation due to flexing with each step, which temporarily increases its area. By the completion of the step practically all of this increase in area is lost. However, if the soling or top piece is slightly plastic they do not completely recover and some of the increase in area is retained. Such a soling, therefore, gradually increases in size during wear.

There is no reliable single laboratory test which predicts the spreading behaviour of soles or top pieces. Dynamic tests have been designed which apply repeated deformations as experienced during walking, but useful information can also be obtained from much simpler tests which use a single prolonged deformation. Such a test can either compress the sole with subsequent measurement of the permanent decrease in thickness, or stretch by measuring any permanent increase in length.

To accomplish these measurements easily and under standard conditions, SATRA has developed the compression set apparatus which can be used to assess solid, cellular and micro-cellular rubbers under constant stress conditions. Using this equipment sample discs are cut from the sole or top piece material and are held between spring-loaded platens for a given time under a constant pressure. By using several spacers, tiers of specimens can be tested at the same time. The thickness of the discs is measured before and after the test and the decrease in thickness provides an indication of the compression set of the material.

A suitable gauge for measuring the thickness under standard conditions is available, reference STD 495.
STM 611 Circular blade cut resistance tester

This machine measures the cut resistance of a material in accordance with EN 388 (Clause 6.2).

A test sample is clamped in an easily removed holder. The holder is then placed onto the machine. The circular blade is gently lowered so that it touches the test sample. With the counter set to zero the ‘Start Test’ button is pressed to initialise the test. When the rotating blade penetrates the test sample the machine will automatically stop. The number of cycles displayed on the counter screen is used to produce the cut index which is a measure of the material’s cut resistance.

STM 610 Cut resistance evaluator

This tester applies a cut to the sample with a straight blade. A number of cuts are made each using a new blade and using a different contact force. A graph is then plotted of cutting stroke length compared to blade loading to predict the force at which the blade will just penetrate the material at 20mm stroke. That force in newtons gives the cut index and EN 388:2003 includes a potential correlation with the blade cut index value such as produced by STM 611.

EN 388 Testing protective gloves intended for the European Market

EN 388 is the European standard for testing protective gloves against mechanical risks.

You can perform the complete set of abrasion, cut, tear and puncture tests at source with SATRA test equipment.

To determine the abrasion resistance of the materials used in the manufacture of protective gloves, in compliance with EN 388 Clause 6.1, use the STM 604 Martindale Abrasion tester, details of which can be found on page 3.

To measure the cut resistance of a material in accordance with EN 388 Clause 6.2, the STM 611 Circular Blade Cut Resistance Tester is needed, details are given above.

A blade cut index value, which will give a potential correlation with EN 388 Clause 6.2, can be obtained by using the STM 610 Cut Resistance Evaluator, described above.

For tear and puncture tests that comply with EN 388 Clauses 6.3 and 6.4, especially designed jigs are available to fit the STM 566 Tensile Tester and this can also perform many other tests required by a wide range of standards. Details of STM 566 and its associated tensile jaws, jigs and accessories can be found on pages 29 to 31.
STD 206 Quarter and back height gauge

The height of the top-line of a shoe at the back and at the quarters affects fit and comfort. If the back height is too low heel slip may occur during walking. If the quarters, particularly the outside quarter, are too high the top-line may rub the ankle bone.

The STD 206 is an instrument designed to measure the height of the top-line of the shoe above the insole surface at the seat to check that footwear is satisfactory. It can be used for all sizes of shoe and incorporates an adjustment which allows the measuring positioning for quarter height to be varied correctly with shoe size. It can be easily changed to measure left and right shoes as required.

To carry out measurements the gauge is placed inside a shoe on the insole at the seat. It is a simple but accurate device and is supplied with full instructions and tables giving measurement positions for adults’ as well as children’s shoes. It is nickel plated to prevent corrosion.

STD 225 Internal shoe size gauge

This simple and easy to use device is used to determine the size of footwear. The flat bar is inserted in the shoe and pushed into the toe. The slider is then moved along the scale until the curved bar touches the heel. The longest length can be found by moving the device vertically and locating the curved bar to the point of maximum heel curvature. At this point the size of the footwear can be read off the scale. There are four versions of the internal shoe size gauge which cover the adults’ sizes 11-14 and children’s sizes 3-7:

- **STD 225E** Adults’ scale in English sizes
- **STD 225M** Adults’ scale in millimetres
- **STD 225C** Children’s scale in English sizes
- **STD 225CM** Children’s scale in millimetres.
When customers try on shoes at the point of purchase it is important to ensure that the buyer’s foot length is appropriate for the shoe being considered. The SATRA size stick is a convenient way to achieve this. Shaped like a calliper, this device has dual scales – English shoe sizes and millimetres. Since the foot spreads when a person is standing this is the best way to measure the foot (with weight on). The scales on the SATRA size stick are adjusted to measure feet in this way. Both left and right feet can be measured using the device and the scales are so angled that either scale can be easily read.

The SATRA size stick is easy to use – simply place the fixed anvil behind the heel and move the sliding calliper up to the longest toe and read the indicated size.

This provides the appropriate platform to take specific last measurements and ensure the last conforms to the required standard. Lasts and the shoes made on them must match the feet they are intended to fit. SATRA’s extensive surveys enable lasts to be checked without the need for extensive fitting trials. This is achieved by checking several key last dimensions when the last is standing with the heel raised as in wear. SATRA’s last assessment jig provides accurate repeatable dimensions using two digital readouts on both left and right foot lasts.

The jig is manufactured in aluminium and clear plastic sheet. There are two built-in digital slides, both of which can be zeroed at the appropriate datum position. It also incorporates an angled measurement device that facilitates the location of the last joint line. A separate pair of digital callipers and a toe spring gauge are also supplied.
STM 129 Fibreboard flexing machine

This is an excellent test for fibreboards such as insole foreparts and counters normally flexed or deformed in wear. The machine assesses quality and durability by repeated flexing of the specimen through 180°. The machine can also be used to determine the effect of heat on the insole or counter caused by direct-on moulding or vulcanising.

The six 10mm wide test pieces are clamped in the jaws and a 2 kilogramme weight is suspended on the lower end. During the test, the jaws are rotated through 180° (90° each side of vertical) until the test piece breaks. Each sample has an individual counter which stops when the sample breaks. This indicates the number of flexes to failure of each test piece.

STM 441 Midsole flexing machine

This determines the flexing properties of penetration-resistant inserts (midsoles) used in safety footwear. The SATRA STM 441 is a six station machine with two banks of three stations on either side of the central body of the machine. The inserts, usually of steel, are located in the machine clamps, together with the correct interlayers (supplied) and free end resting against the flexing bar. The angle of flex can be adjusted to meet the appropriate standard.

A timer is provided to stop the bar once the required number of flexes has been reached so that the inserts being tested can be inspected. The machine is designed to operate at 16 cycles/second.

STM 141 Ross flexing machine

This machine is used to measure the resistance of non-leather shoe soling to cracking in wear due to flexing and can test 12 strip test pieces at a time. This machine can also be used to test whole soles. It normally runs at 60 flexes/minute, but for tests to ASTM standards a motor to give 100 flexes/minute can be fitted.

This test is frequently done at low temperatures so a model, STM 141F, is fitted into a refrigerated cabinet with the motor drive and control on the outside of the cabinet.

For Chisel Holding Jig STD 405, see page 12
Flexing

STD 405 Chisel holding jig for preparing Ross flexer test pieces

The Ross flexing test for soling materials requires an initial cut of the particular size to be made in the test piece in the correct position. This jig enables the cut to be made easily and in the correct position without the need for measuring the test piece.

The jig base is provided with a longitudinal slot into which the test piece can be placed and located against an end stop. The chisel is then guided by the pins to ensure that the cut is made correctly.

The end stop is removable so that the cut can be correctly positioned for either the SATRA or the ASTM Ross test.

Two types of chisel are available to fit the holder and spares are always kept in stock.

The reference numbers for the chisels are:
- STD 405S for the SATRA Ross test
- STD 405A for the ASTM Ross test.

The chisels should be ordered separately.

STM 612 SATRA/Bata belt sole flexing machine

The SATRA/Bata belt flexing machine provides one of the best indications of the risk of cracking of shoe soles due to flexing in wear. The test is conducted by fixing the sole unit to an endless belt which passes around two pulleys of differing diameters. The larger main drive pulley provides the rotation while the smaller of the two pulleys determines the severity of the flexing action. The equipment is supplied complete with three small pulleys of varying diameters to increase or decrease the amount of flexing.

The endless belt can usually accommodate six sole units, subject to the style and size. Sole units are bonded to the belt using a strong adhesive. When very stiff sole units are tested it may be necessary to stitch the toe of the sole unit to the belt.

The belt is made of canvas and its construction allows the number of complete cycles to be counted which is equal to the number of flexes of the test sample.

The flexing area is provided with a full guard interlocked with the machine controls to ensure the guard cannot be opened until the belt has stopped.

The control cabinet located at the side of the machine houses the motor drive controls as well as a counter which can be pre-set to stop the machine when a predetermined number of flexes has been reached. This allows the examination of the sole units at intervals throughout the test duration.

The standard machine is supplied as a bench top machine, although a separate stand can be supplied at additional cost.

A low temperature variant allows the flexing to be carried out at sub-zero temperatures, enabling the increased risk of cracking due to cold weather. The complete flexing mechanism is built into an insulated chamber where the temperature can be reduced to a pre-set level. The lowest temperature achievable on this model (STM 612F) is -20°C subject to ambient temperature. STM 612F is supplied complete with a stand that houses the refrigeration unit.

The machine is suitable for the testing of all shoe sole units and can also be used with other flexible materials.

STM 465 Whole sole flexing machine

This is used to determine the resistance of materials to cut growth during repeated flexing. It is especially applicable to outsoles of footwear including sole constructions.

The machine has three workstations presented horizontally for operator ease. Loading, unloading and measurements are also much easier to carry out with the workstations presented in this manner. Samples are set at 140 flexes per minute and the number is recorded on a counter which has the facility to pre-set the number of flexes required. A jig, STD 465J, is available and is used to locate the chisel STD 465C and support the test while the initial chisel cuts are made. All moving parts requiring access are protected by a fully interlocked safety guard, ensuring the machine conforms to the latest safety regulations. A manual device to measure the stiffness of outsole may be required to see if outsole must be flexed in accordance with EN ISO 20344.

SATRA also provide a version of this machine for testing at low temperatures (STM 465F) allowing tests to be conducted down to -20°C.
STM 184 Whole shoe flexing machine

The STM 184 flexing machine has been developed to assess the flexing endurance of completed footwear in wet and dry conditions. The machine is supplied in both single or twin station formats and the action simulates the flexing of footwear during wear. The angle of flex is adjustable up to 50°. The machine may be used to predict the failure of footwear in wear. It is particularly useful in assessing problems associated with bottom construction. Footwear is clamped to the machine at the toe end using the appropriate toe clamp from one of five pairs supplied. The heel end is secured to the flexing bar. A predetermining counter is fitted and once the appropriate number of flexes has been registered, it will stop the machine so that the shoe can be inspected. The moving parts of the machine are covered by a hinged guard which is fitted with the latest safety device to prevent access while the machine is still in use. The machine is robust and non-corrosive materials are used where applicable in its construction.

A similar machine is available for testing high leg boots (STM 184H) where water depth can be increased to cover the whole forepart of the footwear up to eyelet level. Details available on request.

STM 601 SATRA vamp flexing machine

This assesses the tendency of all types of upper materials, clothing leathers and upholstery coverings to crack or break as a result of flexing in wear. It is equally suitable for testing leather, plastic coated fabrics, polymers and woven fabrics. This method can also be used to test seam construction during flexing. The crease formed by this method is an accurate representation of those formed in normal wear. The machine configuration allows a minimum of eight samples to be tested simultaneously and it is fitted with a counter which allows the total number of flexes to be pre-set.

STM 601/12 12 station version
STM 101/F 16 station in freezer cabinet to -20ºC

STM 701 Bally flexometer

The SATRA Bally flexometer is the internationally-accepted method for the assessment of the flexing endurance of light leathers and their surface finishes. The tendency for cracks to form in the creases caused by walking can also be determined. The Bally flexer has a different flexing mechanism to the SATRA vamp flexer (STM 601) and is complementary to it. It is also used to precondition samples prior to determining water vapour permeability – particularly in assessing uppers for protective footwear.

This twelve-station version is a popular machine and the stations are conveniently arranged for user access and the mounting of samples. A pre-determined counter is fitted to the machine, allowing it to be operated without continuous attendance as the machine stops automatically once the set count is reached.

The machine is simple to use, is bench mounted and supplied ready to connect to the electrical supply.

There is a four station version of this machine (SATRA Ref. STM 702).

Low temperature versions of this equipment are also available (to -20 ºC) subject to ambient temperatures in location of machine.
Durometers

SATRA supplies a unique range of hand-held and bench-mounted durometers for measuring the hardness of rubber and plastic materials. Manufactured at our own headquarters, the range of durometers has a patented interchangeable module allowing the complete range of Shore hardness scales to be measured on one instrument. Each module supplied with the instrument is calibrated to the instrument head, making the complete device ideal for checking incoming material hardness either on site or at the supplier’s premises.

A range of operating stands and control systems are available to support the durometer range. These improve repeatability and accuracy of the hardness measurement.

The range is available in either digital or analogue versions.

For convenience we have identified the most popular ranges and given them a SATRA reference. Where this does not meet your exact requirements you can order the items separately, such as a digital head with A scale module.

Choosing the right Durometer couldn’t be easier: Our patented interchangeable module system makes this instrument the ideal choice for you.

Step 1: Select Digital or Analogue instrument head.
Step 2: Specify with or without maximum pointer for an analogue instrument.
Step 3: Select one or more modules to suit your requirements. These will be calibrated to suit the chosen instrument head.

DIGITAL DUROMETERS

STD 226 – A digital durometer with interchangeable modules which can be chosen from the selection below. Choice of module(s) will depend upon the type (softness) of material being tested.

Features:
Resolution – half of one degree Shore hardness scale
Easy to use – hand held
Sturdy, accurate and reliable
Has a BCD output facility
Uses 1 x SR44 flat battery
Multiple Modules with the same instrument head
Shirt pocket size for easy carrying
Dimensions – 135mm x 38mm x 23mm
Weight – 220g
Supplied in convenient storage/protective case

MODULES
Shore A Scale SATRA TM 205, ASTM D 2240, ISO 7619 & 868, DIN 53505
Shore B Scale ASTM D 2240
Shore C Scale ASTM D 2240
Shore D Scale ASTM D 2240, ISO 7619 & 868, DIN 53505
Shore DO Scale ASTM D 2240
Shore O Scale ASTM D 2240

ANALOGUE DUROMETERS

STD 227 – An analogue Durometer with a choice of maximum pointer and interchangeable modules which can be chosen from the selection below. Choice of module(s) will depend upon the type (softness) of material being tested.

Features:
Resolution – one degree Shore hardness scale
Supplied complete with tolerance settings
Optional maximum hand
Optional stand for improved repeatability
Dimensions – 150 x 65 x 25mm
Weight – 300g
Multiple Modules with the same instrument head

MODULES
Shore A Scale SATRA TM 205, ASTM D 2240, ISO 7619 & 868, DIN 53505
Shore B Scale ASTM D 2240
Shore C Scale ASTM D 2240
Shore D Scale ASTM D 2240, ISO 7619 & 868, DIN 53505
Shore DO Scale ASTM D 2240
Shore O Scale ASTM D 2240

Each Durometer sold comes with its own calibration certificate pertaining to the relevant module. SATRA Technology Centre also undertakes a recalibration programme, where instruments are returned to us and calibrated against UKAS 17025 standards. For further details contact equip.sales@satra.co.uk
STM 455 Heat resistance tester

The heat resistance tester is ideal for assessing the effects of heat on outsole and upper materials. Heat is applied to the sample via a heated square pad manufactured in copper.

When testing rubber and polymetric outsoles in accordance with the standard, the material should not melt and no cracks should develop when the tested outsole is bent around the mandrel supplied. In the same way leather outsoles should not develop cracks or charring when bent around the same mandrel.

The heated copper pad is of constant mass and incorporates a temperature indicator. An additional weight fixed to the moving arm ensures that the same pressure is applied to all test pieces. Provision is also made for holding the copper pad above the test pieces between tests.

STD 228 SATRA Sensor

The SATRA Sensor is a self-contained miniature sensing system for remote monitoring of air temperature and humidity. It is designed to monitor in-factory processing conditions, for example cement drying or heat setting tunnels in footwear manufacturing. It will also monitor environmental conditions encountered by products during storage or transit, for example in seaborne containers.

Benefits of using SATRA Sensor:
- Assures product quality through monitoring of critical process conditions involving heated air and/or moisture
- Monitors conditions to which products are subject in storage or transit – important where leather, textile and timber products are concerned
- Provides easy to understand records of process/storage conditions for tracking quality
- Robust and tamperproof; it can be used over and over again.

SATRA Sensor incorporates sophisticated re-usable monitoring equipment for recording temperature and humidity over periods ranging from a few seconds to several months. It has no wires and can thus be used to monitor conditions in conveyor-type processes or areas where access during the measuring period is difficult. It can record changes in ambient temperature or cope with processes up to 120°C. The temperature and humidity data recorded on the SATRA Sensor can be quickly downloaded to a computer and displayed for analysis, archiving and printing. The recorded parameters can be calibrated and the type of data recorded can be selected to reflect individual requirements.
STD 155 Heel impact tester

This device is used for determining the resistance of heels to sudden impact loads in wear caused by abnormal strains. Examples include the general instability of slender heels and catching heels in gratings.

STD 155 has been extensively used for heel development and quality control.

The heel under test is held rigidly at the seat in a fusible alloy clamp (supplies available from SATRA Ref: 303976) in a position which allows the falling pendulum/striker to strike the heel in a forward direction approximately perpendicular to the stem and 6mm from the tip of the heel. The complete clamp is fully adjustable to accommodate any normal heel design.

The normal method of testing is to subject the heel stem to successive impacts starting at 0.5 joules and in increments to a maximum of 19 joules.

STD 156 Heel fatigue tester

Some high heels are prone to fatigue under the repeated small deformations produced by each step in walking. This machine is designed to check the fatigue resistance of such heels by subjecting them to continuous small impacts which produce similar deformations to those of wear. It is now a well-established and valuable test.

The heel is held rigid at the seat in a fusible alloy in one of three special holders provided. A melting pot STM 156MP is required to melt the fusible alloy prior to pouring the alloy around the heel seat. Adjustments are provided so that the heel, whatever its size or shape, can be set to receive forward impacts at the back of the stem, 6mm from the tip and perpendicular to the stem direction.

The standard impacts of 0.68 joules are delivered at one second intervals by a striker attached to a free falling pendulum. This is lifted mechanically between each drop and automatically caught on the rebound. When the heel breaks, the machine switches off automatically and a counter indicates the number of blows to cause failure.

STM 609 Safety footwear impact tester

This equipment can be used for a variety of impact (drop) tests with the appropriate anvils and strikers. It is ideal for testing to the safety footwear standards and meets the full requirements of the latest revisions to the standards.

This machine from SATRA’s extensive range replaces STD 409 and incorporates many features not found on that model, including motorised lift of the striker mechanism which moves automatically to a pre-set height and includes a speed sensor that will determine if the correct impact energy has been achieved.

A slide mechanism ensures minimum frictional losses and it also incorporates a belt drive system to provide the striker drop height position. The guarding provides complete operator safety while giving full access to the anvil area for ease of setting up each test. An anti-bounce device prevents a double impact strike on the footwear under test.

The machine is supplied as standard with all the anvils and strikers required.

The impact test rig is mounted on a secondary steel block weighing approximately one tonne. This block can be provided with the machine at additional cost or a drawing can be provided for local supply or manufacture.

This machine can also be used for the metatarsal test and ankle protection test.
STM 471 Insulation properties of safety footwear soles heated sandbath

This bath is designed to assess the heat insulating properties through the soles of safety footwear. The apparatus consists of a thermostatically-controlled hot plate covered with sand. The footwear is placed on the hot plate so that the sand covers the featherline. A separate temperature probe, connected to a digital readout via a plug and socket arrangement, is placed inside the footwear to measure the temperature rise over a specified time.

The sandbath incorporates an illuminated power on/off switch and a temperature controller. The digital display for the separate temperature sensing probe is also located on the control panel. The separate temperature probe is supplied with the equipment, along with a sufficient quantity of steel balls which are packed inside the footwear during the test.

A fitted mesh guard protects the operator from the heat source during testing.

STM 472 Cold insulation tester

This machine is designed to assess the insulation properties of footwear against cold temperatures. The equipment forms part of a suite required by the safety footwear standard, but can also be used for any application where footwear needs to withstand cold temperatures.

The equipment comprises a freezer cabinet capable of achieving -20°C (subject to ambient temperatures), a measuring probe to measure the internal temperature of the footwear and steel balls used to fill the footwear under test. The footwear is placed in the freezer cabinet, using the jack table provided, so that the open part of the footwear protrudes through the opening in the inner lid. The probe is placed on the insole. Temperature of the insole is shown on an LCD display located on the control cabinet. A digital temperature controller with a built-in display accurately controls the freezer temperature and the difference between the freezer temperature and insole temperature determines the amount of thermal insulation.

STM 463 Digital lastometer

The two-dimensional stretch of footwear materials can be tested faster and more accurately using SATRA’s digital lastometer. Specimens cut from the material are placed in the machine in accordance with the instructions and the results are displayed on the machine LCD panel and also on the print provided at the end of the test. Designed to measure the tendency of an upper material to crack or burst during the lasting process, this lastometer incorporates a series of features not available on other models and is ideal for multiple tests carried out in today’s modern laboratory:

- An electronic menu-driven system displaying continuously updating test information on an LCD panel
- Load and distension figures recorded on a graphical read-out from an integral thermal printer
- Tests several samples and calculates an average load, distension and standard deviation.

The digital lastometer can be set to provide load results in kilogrammes or newtons while distension is displayed in millimetres. An optional graph of the test is also available. STM 463 allows multiple testing of batches of 3, 4, 6, 8 or 10 samples or single test pieces.
Lastometers

STD 104 Lastometer

This machine is a simpler manual form of the digital lastometer and is a mechanical device. Specimens cut from the material are placed in the machine in accordance with the instructions provided. The ball-ended rod is raised by turning the machine handle. The load, measured by a sealed hydraulic system, is displayed on an analogue dial with maximum pointer. A mechanical counter geared to the movement of the ball-ended rod records distension. The equipment provides all the necessary information to determine the suitability of the specimen material for lasting, but does not have a motorised drive.

STD 190 Instant lastometer

This device, intended for use as a simple pass/fail gauge, can be used in an incoming goods area for testing leather hides or sheet materials. Used in conjunction with the normal laboratory tests, this can provide a valuable quality control check, rejecting unsuitable materials before they enter the manufacturing cycle. The test is not destructive.

The instant lastometer is pneumatically operated via a pushbutton mounted on the frame and the user can select one of three preset distensions of 6, 7 or 8mm. When operated, the device clamps the material and pushes the ball-ended rod into the specimen. If the surface of the material cracks or tears, the material is unlikely to be suitable for lasting. The chosen pre-set distension value should be established by carrying out full laboratory tests.

A filtered and lubricated air supply is recommended for instant lastometers to prevent damage to the internal mechanisms.

STD 190L Instant lastometer (extended throat)

This version provides exactly the same benefits and results as its partner STD 190. The STD 190L has the added benefit of an extended throat, allowing tests to be carried out anywhere on the incoming material.

The device, intended as a bench top unit, is provided with a foot-operated treadle to carry out tests, leaving both hands free to move the material being tested.

Leather analysis

STM 145 Shaking machine for leather analysis

This machine is used to extract water soluble materials from leather by the method of analysis specified in BS 1309: Method 5: 1974, the Society of Leather Technologists and Chemists SLTC 5, and the International Union of Leather Technologists and Chemists Societies IUC 6.

The leather must first be ground using a suitable grinding mill (available from SATRA) and then shaken with water for two hours in a vacuum flask to extract the soluble matter (using the shaking machine STM 145). The use of vacuum flasks keeps the liquid at the specified temperature of 20-25°C during the extraction process. The machine accommodates eight flasks (supplied with the machine) and rotates them at 50rpm in an over-tumbling action.

The same machine can be used to determine the pH (acidity) levels in leather for which additional equipment is required. Leather pH levels require the use of a small plastic flask and an adaptor to enable the flask to be used in conjunction with STM 145 (available on request).
STD 114 Apparatus for leather shrinkage temperature determination

If a strip of leather is slowly heated in water a sudden shrinkage occurs at a temperature which is characteristic of the tannage. Generally, the higher the shrinkage temperature, the better the heat resistance of the leather, so measurement is useful for judging the suitability of leather for moulded-on footwear.

Frequently, the shrinkage temperature is above 100°C and has to be determined in water under pressure. This is the special feature of the SATRA apparatus which measures shrinkage temperatures up to 115°C.

The apparatus consists of a vertical sight glass, connected by tubes to a smaller boiler which can be heated by a bunsen burner (not supplied), so providing a convection circuit of heated water.

A strip of leather and a thermometer are suspended in the sight glass, the upper end of the leather is fixed and the position of the lower end is indicated by an adjustable marker outside the tube to help judge when shrinkage occurs.

A safety valve is fitted to the apparatus which limits the pressure to that corresponding to a temperature of 120°C.

A perspex guard is provided around the sight tube as a safety precaution.

STD 119 Wrinkleometer

This is mainly used to assess the tendency of upper materials to form pleats or wrinkles where ‘shortening’ occurs during the lasting operation, especially around the toe and seat areas. It is particularly useful for testing synthetic upper materials which are prone to this problem.

A strip of upper material is held between two clamps. They are brought together by a predetermined amount to correspond to the shortening. A perspex bar is then pressed down and the material can be checked for folds or wrinkles. The degree of shortening is increased progressively until unacceptable wrinkles occur.
Light cabinet

STM 500 VeriVide colour assessment

This is used for the visual assessment of colour under standardised conditions. Recognised as an industry standard, this cabinet features membrane switching and electronic ballast control of the lamps. Either 26mm or 38mm lamps can be installed or a combination of both utilised. The cabinet accommodates up to four different light sources.

The cabinet meets a variety of standards and includes a fixed 45° specimen table as illustrated. An hour meter is also included in the standard supply. A choice of different lamp combinations is available and these should be specified when ordering. A standard lamp combination is supplied in the event that a combination is not specified from the list of standard lamps.

Standard lamps (Colour temperature approx.):

- **D65** Artificial daylight (1 Level) 6500°K
- **D652** Artificial daylight (2 Levels) 6500°K
- **N** Point of sale lighting (natural lamp) 4000°K
- **TL84** Point of sale lighting 4000°K
- **TL83** Point of sale lighting 3000°K
- **F** Filament (domestic) lighting 2300 to 28000°K
- **UVB** Ultra-violet
- **HM** Hour counter.

N.B: A second level of daylight is recommended for colours of low reflectance. Filament lighting is required as a test for metamerism BS 950. The ultra-violet lamp is used to reveal the presence of fluorescent dyes and bleaches. Alternative fluorescent lamps can be incorporated up to a maximum of three.

Standard lamp combinations:

- **D652FUVB/HM**
- **D65NFUWB/HM**
- **D65STL84UVB/HM**
- **D65TL83UVB/HM**
- **D65TL84FTL83/HM**
- **D65UVBFUVB/HM**
- **D65TL83FTL84/HM**
Low temperature testing

Flexing tests are sometimes required to be carried out at low temperatures. This determines the suitability of materials being tested to flex at temperatures below 0°C. SATRA provides a range of these machines and uses a low temperature cabinet specifically designed to suit the test.

The SATRA low temperature cabinet ensures maximum operator safety by having the electrical control and drive systems outside the freezer area where moisture cannot impair electrical safety. The control system incorporates a digital temperature controller which can be set to achieve the desired temperature from ambient down to -20°C, plus a counter to indicate the number of flexes carried out. The counter can be preset to stop the drive mechanism when completed.

STM 101F SATRA vamp flexer

This is a 16-station version of the SATRA vamp flexer. The stations are located inside the freezer area to allow simple loading of test specimens and easy/frequent inspections without having to stop the machine.

This is a SATRA preferred test as it replicates the creases formed in the upper (vamp) during walking and gives a more realistic indication of premature failure of the material similar to that experienced in normal wear.

For further details about this test refer to model STM 601-12 (page 13).

STM 408F Bally vamp flexer

This is an alternative low temperature test to the SATRA vamp flex, frequently referred to as the Bally flex test, and is mentioned in some international standards. It is more severe than the vamp flex test and failure is usually indicated more quickly, however some types of failure are not revealed by the test.

The STM 408F is an eight-station version and is built into the low temperature cabinet referred to above.

For further details about this test refer to model STM 701 (page 13).

STM 477F Bally vamp flexer [12 station]

This machine is the same as the STM 408F but has 12 stations. It is normally specified when a higher volume of testing is demanded.

See STM 701 (page 13).

STM 141F Ross flexer

This low temperature version of the Ross flex test is built into the low temperature cabinet described above. It is used for the flex testing of sole unit samples to assess the effect of flexing under low temperature conditions. It has 12 stations for small samples but can also accommodate larger samples by adjusting the mechanism.

For further details about this test refer to STM 141 (page 11).

STM 612F SATRA/Bata belt sole flexing machine (see page 12)

STM 465F SATRA Whole sole flexing machine (see page 12)
Moisture management

STM 567 SATRA breathing foot

This machine has been developed to assess the thermal and sweat management performance of complete footwear by measuring thermal insulation, moisture absorption and breathability properties, tested in conjunction with hose.

The test takes into consideration the effect of the sole, upper and lining, in addition to features such as seams and different types of hosiery.

The SATRA Breathing Foot can be utilised to help set comfort benchmarks and can be used for comparative testing of footwear components, for example, to assess experimental materials.

Data from the SATRA Breathing Foot equipment can be used to monitor and improve sweat management and thermal properties in all types of footwear – sports, performance, outdoor and industrial, as well as everyday dress shoes.

In operation the SATRA Breathing Foot uses a moulded foot form which incorporates an electrical heating element and water supply pipes that distribute ‘sweat’ (water) to the surface of the foot.

The foot is first fitted with a standard reference sock and then the test footwear. After a warming-up period to reach equilibrium, a realistic warm and humid environment is created which replicates that inside a real shoe in wear.

The dressed foot is then subjected to a calibrated flow of air over its surface to replicate movement through the air when walking, (which helps to dissipate any moisture transmitted to the surface of the shoe).
HTE 703/903 Ozone test chambers

SATRA ozone testing technology has evolved as a result of more than 30 years of experience. State-of-the-art technology and construction techniques have been combined with expertise to produce a reliable, accurate, fully automated, labour and cost-saving unit which is truly environmentally safe.

An integral closed loop air-ozone system ensures that hazardous ozone gas is contained internally – eliminating the need to provide additional external venting and filtering of the spent gases.

The heavy duty aluminum exposure chamber has an anti-corrosive interior and is complete with racking system to accept sample-mounting apparatus. A range of static and dynamic sample holders to international standards is available. Access is via a double-glazed, airtight and safety interlocked door. Entry to the test area is prevented until the interior environment reverts to safe ambient levels. Exterior lighting can be excluded from the test area via a shade, while the interior can be lit by the integral test inspection lamp.

Controls and digital displays are logically laid out on a control panel and reflect the simplicity of operation required to set up a test routine. The only requirement is to set the ozone concentration, temperature, airflow, relative humidity (model 903 chamber only), test start and finish time.

The ozone concentration is variable from 25-500 parts per hundred million (pphm) – 25-2,000pphm option – and is automatically controlled and monitored. The set concentration and monitored concentration are digitally displayed, with the monitored concentration simultaneously output to PC (via Calcomms graphical software).

Ozone delivery accuracy of ±5 per cent nominal full scale delivery (FSD) or better, typically ±2pphm in 50pphm, measured under stable absorption conditions. Typical recovery times after sample insertion: achieves 10 per cent of set value within 15 minutes.

Ozone generation is via UV ozone lamps with a maximum ozone generated output of 200pphm at 250 litres/min, and there is a high ozone option of 2,000pphm. The ozonised air flow of 40-440 litres/min is infinitely variable, allowing a maximum of three air changes per minute and an effective velocity of 3.3-33.3mm/sec. The internal circulation fan can be switched on to give 600mm/sec (2 feet/sec) according to ASTM D1149. Ozone concentration measurement accuracy is ±2pphm. Control accuracy is 4 per cent of set point (±2pphm at 50pphm).

The test timer provides digital programming of up to seven days, with test start and test stop.

HTE 703

Temperature range options for model 703: 0-70°C.* 10-70°C. (Ambient +5)°C-70°C.

*The testing of rubber at low temperatures down to 0°C is well documented, and conclusions from experiments undertaken using SATRA test chambers, which are capable of achieving such low temperatures, may have an important bearing on the future development of ozone test methods.

Temperature control accuracy: ±1°C at 40°C and ±2°C at 70°C. Typical temperature and ozone recovery period following sample insertion is < 10 per cent of set point after 15 minutes and 4 per cent after 30 minutes (cold start times will vary).

Electrical supply 220-240V/single phase/50-60Hz rated at 1kVA system, unaffected by variations of 10 per cent from normal.

HTE 903

Temperature Range for model 903: 0-70°C. All ranges are automatically controlled by a solid state digital proportional controller, temperature digitally displayed and simultaneously output to a PC (via Calcomms graphical software).

Relative Humidity (RH) control for model 903: Range 50 per cent to 80 per cent RH over exposure chamber temperature range of 20-40°C. Control accuracy of ±5 per cent RH is achieved at constant temperature.

Water supply: Maximum temperature 15°C. Minimum pressure 2 bar. Maximum flow required 80 litres/hour. In areas of hard water, a de-calcinator should be used, and where a maximum water temperature of 15°C cannot be maintained, a recirculation chiller system should be employed.

Electrical supply 220-240V/single phase/50-60Hz rated at 3kVA system unaffected by variations of 10 per cent from normal.
Permeability

STM 175 SATRA permeability and absorption test

This is a preferred SATRA test and unlike many other methods it attempts to simulate the environment within a shoe, i.e. 100% relative humidity at foot temperature. As well as measuring the amount of moisture transmitted through the material, the quantity of moisture absorbed by the upper can also be determined. This is important because although some materials may be impermeable, the ability to absorb moisture means that the foot will feel dry to the wearer. The moisture can desorb from the material by evaporation once the shoe is off the foot, for example, overnight.

An assembly of discs of outer material lining (if used in the footwear) and a standard hose (sock) fabric is clamped and sealed across the top of a plastic pot containing distilled water. The water inside the pot is maintained at a temperature of 32°C by resting the pot in a temperature-controlled water bath. The atmosphere outside the pot is maintained at 20°C and 65% relative humidity by carrying out the test in a conditioned room and maintaining a flow of air across the top of the pot at a speed equivalent to a brisk walking pace. If the outer is permeable, water vapour passes through the cotton hose and the test material in the same way that perspiration would in a shoe.

The permeability of the material is determined by measuring the weight loss of the assembly at intervals throughout a six-hour period. Care is needed during the test to avoid splashing the reverse of the test sample with the water inside the pot and to ensure that the outer surface of the test pot is thoroughly dried after it is removed from the water bath for weighing. The absorption of the upper material, lining and the standard cotton hose are measured by weighing each disc at the start and end of test.

STM 473 Water vapour permeability

This device determines the amount of water vapour a material will transmit through its structure in a specified time. The test is mainly applicable to leathers and textiles used in footwear uppers and clothing where it gives a measure of the ability to remove perspiration from the surface of the wearer’s skin.

The SATRA machine has six separate test stations on a rotary table and each one has a sample holder. Silica gel desiccant is placed in the holder and the test material is placed over the neck of the holder and secured by a screw top. After weighing each holder, complete with silica gel and sample material, the holders are placed and locked into the rotary mechanism. After 7-8 hours the complete holder is weighed again and the gain is used to determine the degree of permeability. It is essential that the entire operation is carried out in a conditioned atmosphere of 20°C and 65% relative humidity.

In addition to the standard equipment supplied with the STM 473, there is a built-in timer to record the number of hours that testing has been carried out.

STD 478 Water vapour absorption

The STD 478 water vapour absorption test apparatus measures a material’s affinity to absorb water vapour. A test specimen is clamped between the open end of a test pot (containing a specified volume of water) and an impermeable seal. The pot is then stored at a specified temperature for a set time, after which the change in mass of the specimen is determined.

The STD 478 test apparatus consists of six test pots each having an internal diameter of 35mm and a volume of 100cm³, a removable lid which can be securely clamped over the open end of the pot and an impermeable seal held over the end of the pot by the lid.

In addition to the STD 478 apparatus, a laboratory balance and a stopwatch are necessary to determine water vapour absorption (available from SATRA).
STD 174 Break/pipiness scale

This is a widely-used reference scale for measuring the wrinkling of the grain of leather or the top surface of a synthetic material when folded inwards to a standard curvature.

It consists of a graded selection of replicas of leather numbered one to eight with different amounts of pipiness and a mandrel for bending the sample to the same radius as the scale.

By using the numbered scale, a more objective evaluation can be made of the pipiness of a material.

STD 449 Low profile plastimeter

The plastimeter is the standard SATRA test method for assessing the setting properties of leather. It is also used to test new synthetic upper materials and check the performance of heat setting machines by using a sample of material of known heat setting properties.

A disc of material to be tested is cemented to a brass ring and then placed in the plastimeter’s clamping head. It is then deformed by forcing into it a non-metallic dome. This simulates lasting and is controlled by measuring the height of the formed dome of material with a micrometer. The deformation gives an area increase of around 15%.

While it is in the strained position, the dome plastimeter containing the sample is passed through the heat setting machine. After treatment, the dome is removed and the cap height of the dome, shaped in the material, is measured at various times. From this, the dome area is calculated and the proportion of the area increase retained is the ‘plasticity’ or ‘set’ of the material.

EPH-50 Resilience tester

The EPH-50 is a sturdy bench-mounted instrument designed to meet the requirements of the rubber industry.

Rebound resilience (elasticity) facilitates a simple method of measuring damping properties and is commonly used in conjunction with hardness testing for basic quality control.

The sample is located against a polished anvil and secured by spring clips. Adjustment can be made to accommodate differences in sample thickness. The pendulum is released from a horizontal position and strikes the sample at a vertical point. Its rebound height is displayed digitally as a percentage of its distance from the horizontal start position.
STM 705 and STM 421 Rub fastness tester

These machines are designed to carry out a rub fastness test on the surface of leather to determine the amount of 'marring' of the leather surface or the finish and to assess the amount of colour transfer from the sample to the rubbing pad.

The test can be carried out under dry or wet conditions by using a dry rubbing pad – or pre-wetting the rubbing pad in distilled water or a sweat solution prior to testing. The same machine can also be used to assess the abrasion resistance of insole boards. This test is covered by VESLIC – C4500 and IUP 450.

The testing machines are suitable for a wide range of tests that require a ‘to and fro’ movement on a material surface. The rubbing element, number of cycles, load and temperature can be adjusted to suit the test material requirements.

There are two models: a single (STM 421) and a two-station (STM 705) machine. The latter also has the benefit of having one station heated for ironing tests. This test is used to determine the reaction of the leather surface to the application of heat and pressure particularly when experienced during ‘ironing’ but also when associated with the normal lasting process. Thermoplastic-based finishes are particularly susceptible to damage through ironing. The ironing characteristics of the leather can be influenced by the addition of agents in the finish which help them to achieve a leather surface favourable to ironing. A metal foot is provided with the machine to facilitate the ironing process. This test is covered by VESLIC – C4580.

The abrasion effect of soling materials on upper materials can also be tested on this equipment. Using a small profiled rubber pad in place of the felt pad, samples can be tested for this effect. Abrasion of the upper by the soling material can be caused in normal wear particularly when wearers cross their legs and the sole of one foot rests on the upper of the other foot. This test is covered by VESLIC – C4505.

The ability to pre-tension the test sample is a feature of both models. This is particularly useful when testing stretchy leathers and is a requirement of the abrasion test under C4580.

Operation is simple. The sample is placed on the test surface and clamped using the clamps provided. Pre-tensioning can be effected by adjustment of the knob or screw in conjunction with the percentage scale engraved on the testing table. A pre-determining counter is fitted to the machine, causing it to stop when the pre-determined count is reached. The square felt pad (STM 421P) is inserted in the machined holder on the end of the rubbing head which is then lowered to the surface of the test sample and the machine switched on. The material surface and the rubbing pad are inspected visually, in the case of colour transfer, the wool-felt rubbing pad is evaluated using the grey scale provided with each machine. An initial supply of wool-felt pads is included with each machine.

The Bally finish tester is the only equipment approved and promoted by VESLIC.

STM 461 Circular rub fastness tester

This machine determines the fastness of the finish of a leather upper, leather lining, synthetic upper or lining and fibreboard. Rubbing can be carried out in dry or wet conditions. The latter can be water, solvents in shoe polish, or toe puff (box toe) solvents applied to the back of the material.

Fastness can be judged by the effect on the sample material or the transfer of colour to the rubbing pad. The change in appearance of the finish and the colour transferred to the rubbing pad is assessed by reference to a standard scale.

The machines can also be used for testing the rub/abrasion resistance of inks on printed films under dry or oily conditions.

The machine has a rotating head holding a circular felt pad under a load of either 0.73kg or 2.5kg as required. The rotating head and felt pad can be raised from the sample surface by means of a hand lever or automatically in the case of STM 462, allowing the test specimen to be examined during the course of the test. The counter only operates when the felt pad is in contact with the test specimen. It is a pre-determined counter which can be set to stop the machine when the preset count has been reached.

The picture shows the standard machine which is supplied complete, including a pre-determined counter and manual lift lever.
Slip resistance

The SATRA slip resistance tester has been developed following extensive biomechanical studies and is representative of conditions encountered during walking when slip is most likely to occur.

A normal walking step commences with heel strike and ends as the toe is lifted from the ground. Slip is most likely to occur shortly after heel strike and just before toe lift when half body weight is being applied. The SATRA equipment measures the slip resistance between the sole of the shoe/boot and the floor.

SATRA supplies a standard, calibrated, floor surface with each machine. Other surfaces can be used with the machine and are available to order. Providing it can be attached to the machine, almost any floor surface can be used with the SATRA machine. The unique design of the equipment allows the slip resistance of footwear to be measured against a standard surface floor surface or alternatively flooring materials can be measured against standard sole materials.

The machine incorporates a specially-designed control and data acquisition system which provides the user with the coefficient of friction (CoF) for each test sample. This is achieved by close control of the forces involved including the speed of motion provided by a variable speed motor. The controls provided and the unique design of the circuitry ensure the appropriate forces and speed of motion are maintained through the duration of the test.

The control console houses a computer which manages the data acquisition as well as providing graphical representation of the test data and provides the coefficient of friction for each sample tested.

The software, which is included with each machine, has principal pre-set tests (SATRA TM144 and EN 13287) which can be accessed through the appropriate window. Users can also introduce their own test standards which can be stored and used again for later tests, ensuring exact repeatability of test conditions.

The determination of friction or slip resistance is a complex procedure and requires the careful and accurate monitoring of a number of different parameters in a relatively short time. The requirements of the various test standards place great importance on the timing and the way results are obtained during a test. The determination of the coefficient of friction requires accurate control.

The dedicated SATRA software for the slip tester is unique. Not only does it control the machine and manipulate data gathered during the test but ensures the accurate control of the entire procedure strictly in accordance with the parameters required by the test standard.

Essential for quality control, data relative to the new job has to be entered before testing can proceed. The operator’s name, test standard, test surface and all other relative data are entered in the relative boxes. If any are not completed the user is prompted to input data. Several boxes have drop down options for ease of use, making the task simple to input the appropriate data. The test standard box is particularly useful as the correct test can be selected from a predetermined list, including a user-defined test. Once selection has been made, the complete machine is pre-set to the required speeds, delays, and point (snapshot) at which the coefficient of friction is calculated. In the case of a user defined test selection, the chosen settings can subsequently be saved and recalled at a later date for repeat testing.

Appearing after the test is a multiple graph showing the various components. There are four lines displayed on the graph, representing vertical load, speed of table movement, horizontal load, and coefficient of friction. These lines are easy to see and are captioned on screen for additional clarity.

A unique function of the SATRA machine and software is its self-teach mode applied during each test. The vertical load is monitored during each test and adjusted for the following test if required, ensuring the vertical load is always correct.

STM 462 Circular rub fastness tester

This machine has all the attributes of the STM 461 but with two additional features.

1. An automatic feature to raise and lower the felt pad to and from the specimen surface while the test is in progress: this prevents overheating of the specimen as a result of abrasion between the felt pad and the test specimen which can adversely affect results.

2. An air blower which directs an adjustable stream of cooling air onto the surface of the specimen to prevent overheating of the sample during the test.

STM 603 Slip resistance tester

The SATRA slip resistance tester has been developed following extensive biomechanical studies and is representative of conditions encountered during walking when slip is most likely to occur.

A normal walking step commences with heel strike and ends as the toe is lifted from the ground. Slip is most likely to occur shortly after heel strike and just before toe lift when half body weight is being applied. The SATRA equipment measures the slip resistance between the sole of the shoe/boot and the floor.

SATRA supplies a standard, calibrated, floor surface with each machine. Other surfaces can be used with the machine and are available to order. Providing it can be attached to the machine, almost any floor surface can be used with the SATRA machine. The unique design of the equipment allows the slip resistance of footwear to be measured against a standard surface floor surface or alternatively flooring materials can be measured against standard sole materials.

The machine incorporates a specially-designed control and data acquisition system which provides the user with the coefficient of friction (CoF) for each test sample. This is achieved by close control of the forces involved including the speed of motion provided by a variable speed motor. The controls provided and the unique design of the circuitry ensure the appropriate forces and speed of motion are maintained through the duration of the test.

The control console houses a computer which manages the data acquisition as well as providing graphical representation of the test data and provides the coefficient of friction for each sample tested.

The software, which is included with each machine, has principal pre-set tests (SATRA TM144 and EN 13287) which can be accessed through the appropriate window. Users can also introduce their own test standards which can be stored and used again for later tests, ensuring exact repeatability of test conditions.

The determination of friction or slip resistance is a complex procedure and requires the careful and accurate monitoring of a number of different parameters in a relatively short time. The requirements of the various test standards place great importance on the timing and the way results are obtained during a test. The determination of the coefficient of friction requires accurate control.

The dedicated SATRA software for the slip tester is unique. Not only does it control the machine and manipulate data gathered during the test but ensures the accurate control of the entire procedure strictly in accordance with the parameters required by the test standard.

Essential for quality control, data relative to the new job has to be entered before testing can proceed. The operator’s name, test standard, test surface and all other relative data are entered in the relative boxes. If any are not completed the user is prompted to input data. Several boxes have drop down options for ease of use, making the task simple to input the appropriate data. The test standard box is particularly useful as the correct test can be selected from a predetermined list, including a user-defined test. Once selection has been made, the complete machine is pre-set to the required speeds, delays, and point (snapshot) at which the coefficient of friction is calculated. In the case of a user defined test selection, the chosen settings can subsequently be saved and recalled at a later date for repeat testing.

Appearing after the test is a multiple graph showing the various components. There are four lines displayed on the graph, representing vertical load, speed of table movement, horizontal load, and coefficient of friction. These lines are easy to see and are captioned on screen for additional clarity.

A unique function of the SATRA machine and software is its self-teach mode applied during each test. The vertical load is monitored during each test and adjusted for the following test if required, ensuring the vertical load is always correct.
State of cure

STM 135 State of cure tester

This device is used for measuring variations in the degree of cure in moulded-on rubber soles throughout their thickness.

The test procedure is based on the fact that hardness varies in most rubbers, according to the state of vulcanisation.

The resistance to indentation, which is determined by the hardness of the rubber, is measured at several positions through the thickness of a sample taken from a defined positioned in the sole or heel. The sample rests on a vibrating plate and an indenter is lowered onto it. After 10 seconds, the dial gauge is set to zero and the indenter is loaded. After a further 15 seconds the depth of indentation is read from the dial gauge.

The readings of indentation depth are plotted against their position, relative to the inner and outer surfaces of the sole, and a curve indicating the cure of the sole is drawn. From this graph the amount of ‘undercure’ near the inner surface of the sole can be calculated.

The equipment consists of a dial gauge fitted with a 60° conical end to the plunger and a removable 500g weight, all mounted on an electrically-vibrated base plate.

Tensile testing

STD 172 Simple tensile tester

This general purpose machine has been designed to measure the strength and stretch of a variety of shoe materials with an accuracy sufficient for many requirements of the shoe manufacturers.

It is easy to use and the load and extension values can be easily read. The instrument is suitable for testing most shoe materials if the load does not need to exceed 150lb or 68kg and the extension 100%.

The machine can also be used for the Baumann tear test and jaws STD 172ST, to suit this test, are illustrated in the photograph right. These jaws need to be ordered separately.

In use, a strip of the material being tested is clamped between two jaws, initially four inches (10cm) apart, which are separated by a hand drive to apply increasing tension. One jaw is fixed to a cantilever beam. The deflection of the end of the beam is proportional to the applied load and is measured by a dial gauge calibrated to give the load directly. The dial gauge is fitted with a maximum-reading device to make it easy to measure breaking loads. The second jaw moves over a scale which gives the extension as a percentage.
STM 566 Tensile testing machine

The tensile tester is probably one of the most versatile machines in the laboratory. It is capable of carrying out a wide range of tests including: tension or compression, peel, shear, tear, puncture and adhesion.

This new SATRA tensile testing machine, STM 566, is a robust twin column machine with reliable mechanics incorporating digital software control. This machine delivers precision performance via high efficiency pre-loaded ballscrews, high resolution load cell and digital AC servo drive. The machine operates in tension and compression and provides up to eight times overload capacity without damage to the load cell.

The software provided, which runs on customers’ laptops or other computer systems, is user friendly with large display pages for inputting data. The software provides a particular strength to the machine operation, allowing a wide range of test methods to be pre-loaded and giving a range of options for exporting, storage and analysis of results. Ready to load software, specific to SATRA test methods, together with test-specific jaws, can be provided for a wide range of tests. The software provides the ability to customise displays and reports with headings, company logos, graphs, charts and test specific information, as well as allowing long-term statistics to be monitored and reported.

SATRA has over 30 years’ tensile test machine experience developing specific test methods to solve industry problems including developing test-specific jaws. SATRA can convert a problem to be solved into a specific test, test method and the development of appropriate jaws to suit.

STM 766 Tensile testing machine rated up to 20,000N

STM 766 is a higher capacity version of the STM 566 tensile tester. Although STM 766 is the same overall size and requires the same amount of test space as the lower capacity (5,000N) STM 566, it is capable of testing up to 20,000N. This extends the range of tests that can be conducted. For example, the higher capacity machine is capable of footwear compression testing to the standards specified in European safety footwear legislation.
STM 566 Tensile testing machine accessories

STM 566SB
This specially shaped ‘C’ clamp is normally used in the peel strength testing of footwear sole to upper. It can also be used as a general purpose clamp.

Top clamp provided (used in conjunction with 566F or 566QR bottom clamp).

STM 566H
This attachment is used to determine the strength of footwear insole board, particularly in the seat region.

Supplied as a complete unit.

STM 566F
This is a versatile, standard, flat jaw, used for a variety of general purpose clamping.

Sold individually (normally a pair would be required).

STM 566TB
These SATRA thread bollards are used to determine the breaking load of threads and laces.

Supplied as a pair of jaws.

STM 566HP
This test was developed to assess the strength required to pull a nail from the heel of footwear.

Supplied as a pair of jaws.

STM 566Z
The transverse through thickness tensile strength through thickness of sheet materials, usually called the ‘AZ tensile test’, is measured using this device.

Supplied as jaw set (top & bottom).

STM 566HA
This is used to measure the strength of attachment of heel to shoe.

Bottom clamp provided (used in conjunction with an STM 566F top clamp).

STM 566AF
This is used for testing the strength of adhesion of the finish to the leather or synthetic material. It consists of a hook attached to one jaw and a sample holder to the other.

Supplied as jaw set (top and bottom).
STM 566 Tensile testing machine accessories

STM 566LH
With this attachment footwear lastometer tests can be carried out to check the burst or crack strength.
Supplied as a complete unit.

STM 566WT
This tests a whole sole unit, complete with protective midsole, for nail penetration.
Supplied as jaw set (top and bottom).

STM 566NP1
This tests the protective midsole as a separate unit for nail penetration.
Supplied as jaw set (top and bottom).

STM 566NP2

STM 566ST
Often called the ‘Baumann tear test’, this is the industry standard for testing the tear strength of leather.
Supplied as a pair of jaws.

STM 566LT
This is used to assess the attachment strength of the shoelace tag to the lace.
Top clamp provided (used in conjunction with an STM 566F bottom clamp).

STM 566NT
Normally called the ‘needle tear test’, this device allows the sample material to be clamped and a series of needles pushed through the material.
Bottom clamp provided (used in conjunction with an STM 566F top clamp).

STM 566QR
This is a unique self locking jaw with a quick release action, which can be used as a general purpose clamp for many duties.
Sold individually (normally a pair would be required).
SATRA manufactures a standard thickness gauge which can be adapted to meet most international standards. The gauges are manufactured to close tolerances and can be used as quality control instruments to measure the thickness of a wide range of materials, including leather and textiles. It is crucial that any thickness gauge applies a controlled pressure (kPa) to the material whose thickness is being measured. SATRA uses a deadweight system removing the uncertainty of other mechanical devices. This system ensures that the thickness is being measured under the same controlled conditions for each sample. The SATRA system ensures excellent repeatability of results. To measure the thickness of any sample, lift the deadweight by operating the lever and insert the material between the anvil and the presser foot. Lower the deadweight using the same lever.

STD 483/484/495 SATRA thickness gauge

SATRA manufactures a standard thickness gauge which can be adapted to meet most international standards. The gauges are manufactured to close tolerances and can be used as quality control instruments to measure the thickness of a wide range of materials, including leather and textiles. It is crucial that any thickness gauge applies a controlled pressure (kPa) to the material whose thickness is being measured. SATRA uses a deadweight system removing the uncertainty of other mechanical devices. This system ensures that the thickness is being measured under the same controlled conditions for each sample. The SATRA system ensures excellent repeatability of results. To measure the thickness of any sample, lift the deadweight by operating the lever and insert the material between the anvil and the presser foot. Lower the deadweight using the same lever.

- **STD 483** Thickness gauge for leather
- **STD 484** Thickness gauge for synthetic materials
- **STD 495** Thickness gauge for rubber

Toe puffs [Box toes]

STD 153 Toe puff [box toe] and stiffener [counter] testing

MAIN PROPERTIES

Traditionally, all the performance properties of toe puffs (box toes) and stiffeners (counters) have been related to hardness (dome strength) values. Hardness is still regarded as the main property since it will always be closely related to the footwear application. Most of the other properties need not be related to hardness.

All of the following tests listed that are applicable to toe puffs and stiffeners are SATRA test methods.

DOME FORMING

Preparation of dome-shaped test pieces from toe puff and stiffener materials for the measurement of area shape retention; and dome strength.

With this method the material is brought into a mouldable condition in the same manner as used in practice. It is then shaped over a spherical dome under pressure using SATRA Ref: STD 153/D and STD 153/P.

The sample is allowed to cool under tension. The strength of the material is its ability to withstand collapse when formed into a three dimensional shape or dome. Thermoplastic materials are usually heated in a fan assisted oven at 95°C for eight minutes raising their temperature to 80°C. Solvent-activated materials are dipped in their appropriate solvent usually for one to two seconds. Fibreboard materials are held in a jet of steam at approximately 50°C for six minutes.

A minimum of 6 dome formers (STD 153D) are recommended to allow the testing of 6 samples at the same time.

Continued over page
AREA SHAPE RETENTION
Measurement of the area shape retention of formed toe puff and stiffener materials.

When a toe puff and stiffener material is moulded to shape it increases in size. As soon as it is released from the mould some of the area increase is lost and the area loss continues in wear due to mechanical deformations and wetting. The greater the area loss, the poorer the shape and appearance. With stiffeners, the higher the shape retention the better and, after ten collapses, 80-90% is not uncommon.

The area shape retention is determined by measuring the height of the dome at various stages using SATRA Ref: STD 153/H and STD 153/HD.

The area of the dome is directly proportional to the height and since the dome is initially formed to a standard height the area shape retention can be found. This test method is performed in tandem with SATRA TM83 (collapsing load).

As a result, initial shape retention and long term shape retention (ten collapses) can be assessed. The shape retention and collapsing load, are repeated on samples immersed in water to simulate the effect of moisture in wear.

COLLAPSING LOAD
Measurement of the collapsing load of formed toe puff and stiffener materials.

This provides a procedure for measuring the strength of toe puff and stiffener materials in a way that corresponds to wear performance conditions. The top of the formed dome is compressed at a constant rate in a tensile testing machine SATRA Ref: STM 566 and STD 153/A – a cylindrical plunger with a level lower surface.

Initially, resistance to compression increases as the dome deforms until a maximum value is reached. After this the test piece collapses and the resistance to deformation falls. The maximum load is reported as the collapsing load: so initial hardness is the load required to produce an initial collapse of the formed dome. This is repeated utilising STD 153/C and, after nine additional collapses, the load to produce the tenth collapse can be determined in the same way as the initial load.

Toe puffs can range in hardness from 180N for military footwear to 10N for fashion shoes with soft upper materials. Toe puff materials require strength to resist the compressive forces due to fall-in. Even a properly heat-set leather upper may retain barely 70% of its original shape.

Resilience provides a measure of the resistance to the small repeated distortions that occur in wear – and the large distortions that are due to accidents or misuse. Most filmic materials have excellent resilience and logically the softest counters are required to have the highest resilience.
Vacuum forming

Vacuum forming machines

These machines were designed to allow shoe manufacturers to form a model (shell) of a last. Designers could then draw on the plastic shell to produce new designs. These could then be shown to prospective customers to gauge opinion before committing the design to manufacture. It is also possible with careful cutting to flatten the shell to create the first pattern prior to cutting the first uppers.

The same machines are also ideal for use in schools where craft, design and technology are taught. The visual impact that the student witnesses as each vacuum form is produced is an important stage in the learning process.

STM 329 Vacuum former

Locate one of the sample plastics sheets provided with each machine, clamp it into place and swing the entire clamp up towards the heater box. Watch the plastic soften, judge when to start forming and with the form simply placed on the moulding frame drape the heated/softened plastic sheet over the form and start pumping out the air to create a vacuum.

Forms (moulds) are easy to produce from a variety of materials, including plaster of Paris, wood or any other reasonably rigid material.

A standard range of moulds and accessories is available and full instructions on how to use the machine are provided.

The STM 329 version, pictured, is fitted with a hand pump which is easy to operate.

STM 330 Motorised vacuum former

This motorised version with a mains-powered vacuum pump is at the top of the range and is a well-tried and proven concept.
STM 505 Dynamic footwear water resistance tester

This test machine is rapidly becoming an internationally-accepted standard for laboratory testing of footwear. The results for this test closely follow the standard trough test where the wearer walks in water to assess the resistance of footwear to ingress. The SATRA dynamic water penetration tester is a laboratory test which flexes the footwear in water contained in a clear polycarbonate tank. This twin-station machine comprises two separate water tanks and two independent flexing mechanisms.

Each station has an independently-controlled air cylinder to raise and lower the footwear in and out of the tank. A pre-determined counter enables the machine to be left unattended. When the pre-set count is reached the footwear will rise out of the water.

This equipment is used on a daily basis in SATRA’s state-of-the-art laboratories and is proving to be the most reliable automated test for water resistance testing. It is performed on the whole shoe and tests all aspects of the footwear, including the materials, construction, seams and sole bond. The same machine can also be used for testing the effect of protective coatings applied to footwear.

STM 606D Water resistance tester for upper leather (Maeser type)

This equipment is designed to test the water resistance of upper leathers (and upper leather substitutes) under conditions of flexing similar to those in the forepart of a shoe during walking.

One clamp is moved/rotated repeatedly through an angle of 32° by a driven crank linkage. This action forms creases in the specimen similar to those produced during walking. A pre-determined totalising counter is fitted.

Rectangular test pieces are folded down the centre into a vee shape and are held in watertight vee clamps. A tank containing water is then raised by a lever mechanism so that the trough formed by the test piece is surrounded by water. One clamp is then moved up and down repeatedly by a driven crank linkage, forming creases in the leather similar to those produced in the shoe vamp. A resettable totalising counter is fitted and the number of flexes before water penetration is observed and recorded as the test result.

The system incorporates four individual counters, one for each station, plus a visual and an audible alarm. There is a three-position switch to select one of three sensitivities (10K, 30K and 50K ohms). The higher the value, the greater the sensitivity. The individual station counter stops recording when water penetration is first detected and switches on the visual and audible alarm while the remaining stations continue the test. The device can be retro-fitted to existing equipment. The machine accommodates four test pieces.

See also STM 184 and STM 184H (page 13).
STM 703 Bally penetrometer
STM 704 Bally stiffness meter

This four-station machine is the internationally accepted method for measuring the dynamic water resistance of leathers and synthetic leathers. Its unique action ensures that each test piece is assessed under the conditions relevant to the stiffness of the specimen.

The specimens are wrapped around the mandrels provided and held in place by one of eight clamps. Specimens and mandrels are mounted utilising the dovetail arrangement forming part of the mandrel and the corresponding dovetail on the machine. The amount of dynamic movement (amplitude) is adjustable according to the stiffness of the material, which should first be measured on the SATRA Bally stiffness meter STM 704. A tray can be raised to allow water to contact the finish side of the specimens.

A significant feature of the SATRA Bally penetrometer is the electronic water detection system which removes the need for constant operator attendance during testing. This feature also includes a counter and alarm for each of the four stations. Water detection relies on a resistance being reached in the electronic circuit. Copper mesh is placed in each specimen and a probe forms the link between the electronic circuit and mesh. When water penetrates the specimen the resistance changes and automatically stops the station counter and sounds the alarm. Testing continues on the other stations until water penetration is detected at all stations when the machine stops.

These features are unique to the official SATRA Bally penetrometer:
- Adjustable amplitude
- Adjustable electronic water detection system
- Specimen stiffness measurement.

Other features:
- Electronic counter per station
- Master electronic counter
- Specified in many international and European standards
- Mechanically reliable.

STM 706 Bally permeometer

This machine assesses the water resistance of heavy leathers, particularly sole leathers. It is the only internationally accepted method for determining this property.

STM 706 uses a dynamic motion during the test closely corresponding to the conditions experienced during wear. The test piece is repeatedly bent and laid flat again under load, as a shoe sole during walking, while in contact with water on one of its sides. The penetration of moisture through the test piece is automatically detected and reported by an acoustic or visual signal.

It is possible to determine the following values using this unique piece of SATRA Bally test equipment:
- The time taken for the water to pass through the test piece
- The quantity of water absorbed by the test piece within different time intervals
- The quantity of water passing through the test piece and given up to an absorbent layer within a defined time limit (permeability).
Would testing at source help your business?

Ask us about building your own lab and SATRA Accreditation.
About us

SATRA is the world’s leading research and technology centre of its kind and employs more than 180 scientific, technical and support staff in the UK, USA and China. The centre’s activities include research, material and product evaluation, management systems and consultancy, international quality systems, quality assurance, publications, information services and the design, production and sale of test equipment.

Excellence

We are constantly striving to apply the unrivalled technical expertise found in all SATRA departments to enhance future generations of SATRA test equipment. Our equipment is found serving a wide range of consumer product industries including footwear, furniture, safety products, floorcoverings, fabric care, automotive, rubber and printing.

Quality & value

SATRA test equipment stands apart because of its technical excellence. No other test equipment provider has our level of in-house technical support to pull from. SATRA test equipment is unique in having benefited from being trialled first in SATRA laboratories – a huge advantage as the SATRA name is recognised, respected and valued in over 70 countries. Weigh this up and you can see why our customers get good value for their money.